MATH 161 FINAL EXAM SOLUTIONS

MARCH 16, 2011

1. Let A be any set. Prove that there is no surjective map from A to $\mathcal{P}(A)$.

Solution: Suppose $F: A \rightarrow \mathcal{P}(A)$. Let $S=\{x \in A: x \notin F(x)\}$. Then for every $x \in A, x \in S$ if and only if $x \notin F(x)$. Thus $S \neq F(x)$, since x is an element of one but not the other. Thus S is not in the range of F, so F is not surjective.
2. State the Cantor-Bernstein Theorem in terms of functions (i.e, without using the word "cardinality", the symbol $|\cdot|$, etc.).

Solution: If there is an injective (or one-to-one) map $F: A \rightarrow B$ and an injective map $G: B \rightarrow A$, then there is a bijection from A to B.
3. Let A and B be sets with $A \neq \emptyset$. Prove that there is an injective mapping $F: A \rightarrow B$ if and only if there is a surjective mapping $G: B \rightarrow A$.

Solution: Suppose there is an injective map $F: A \rightarrow B$. Let a be an element in A and let C be the range of A. Note that $F^{-1}: C \rightarrow A$ is a surjective function. Thus

$$
G(x)= \begin{cases}F^{-1}(x) & \text { if } x \in C \\ a & \text { if } x \in B \backslash C\end{cases}
$$

defines a surjective function from B to A.
[Alternate way of saying the same thing: let $G=F^{-1} \cup((B \backslash C) \times\{a\})$.]
Conversely, suppose $G: B \rightarrow A$ is surjective.
By the axiom of choice, there is a function $\phi: \mathcal{P}(B) \rightarrow B$ such that $\phi(S) \in S$ for every nonempty $S \in \mathcal{P}(B)$.

Now define $F: A \rightarrow B$ by

$$
F(x)=\phi(\{y \in B: G(y)=x\}) .
$$

If $x \in A$, then $\{y \in B: G(y)=x\}$ is nonempty since G is surjective. Thus $F(x) \in\{y \in B$: $G(y)=x\}$, so $G(F(x))=x$. We have shown: $x \in A$ implies $G(F(x))=x$. Now suppose x and x^{\prime} are elements of A with $F(x)=F\left(x^{\prime}\right)$. Then $G(F(x))=G\left(F\left(x^{\prime}\right)\right)$, so $x=x^{\prime}$. Thus F is injective.
4. Recall that addition on \mathbf{N} was defined recursively by

$$
\begin{aligned}
a+0 & =a \\
a+S(b) & =S(a+b)
\end{aligned}
$$

Prove that $(a+b)+c=a+(b+c)$ for all natural numbers a, b, and c. [You should not assume any other facts, such as commutativity, about addition.]

Solution: We prove it by induction on c. First, it is true for $c=0$ since

$$
(a+b)+0=a+b
$$

and

$$
a+(b+0)=a+b
$$

Now suppose it is true for $c=k$

$$
(a+b)+k=a+(b+k)
$$

Taking the successor of both sides gives

$$
S((a+b)+k)=S(a+(b+k))
$$

The left side is $(a+b)+S(k)$. The right side is $a+S(b+k)$, which is equal to $a+(b+S(k))$. Thus

$$
(a+b)+S(k)=a+(b+S(k))
$$

We have shown that if the assertion holds for $c=k$, then it also holds for $c=S(k)$. Hence by induction, it holds for all c.
$\mathbf{5}(\mathrm{a})$. Let Q^{+}be the set of positive rational numbers. Prove that Q^{+}is countable by giving a one-to-one map from \mathbf{Q}^{+}to \mathbf{N}.
Solution: Note that for each $r \in \mathbf{Q}^{+}$, there is a unique pair $m=m(r)$ and $n=n(r)$ of nonzero natural numbers such that (i) $r=m / n$ and (ii) m and n have no common factor (other than 1.) Then the map

$$
\begin{aligned}
& F: \mathbf{Q}^{+} \rightarrow \mathbf{N} \\
& F(r)=2^{m(r)} 3^{n(r)}
\end{aligned}
$$

is a one-to-one map (since each nonzero natural number has a unique prime factorization.)
$\mathbf{5}(\mathbf{b})$. Let \mathcal{F} be the set of functions $f: \mathbf{N} \rightarrow \mathbf{N}$ such that f is eventually 0 , i.e., such that $\{n \in \mathbf{N}: f(n)>0\}$ is finite. Prove that \mathcal{F} is countable by giving a one-to-one map from \mathcal{F} to \mathbf{N}.

Solution: For $f \in \mathcal{F}$, let $S(f)=\{n \in \mathbf{N}: f(n) \neq 0\}$. Let $p: \mathbf{N} \rightarrow\{$ prime numbers $\}$ be a bijection. (We might as well choose the bijection such that $p_{0}<p_{2}<p_{3}<\ldots$, so that $p_{0}=2$, $p_{1}=3$, etc.) Define $\phi: \mathcal{F} \rightarrow \mathbf{N}$ by

$$
\phi(f)=\Pi_{n \in S(f)}\left(p_{n}\right)^{f(n)}
$$

Then ϕ is a one-to-one map (since each nonzero natural number has a unique prime factorization.)
6. (Cardinal arithmetic.) In this problem, you may use the fact that $\kappa \cdot \kappa=\kappa$ for every infinite cardinal κ.
(a). Prove that if κ and λ are cardinals with κ infinite and with $1 \leq \lambda \leq \kappa$, then $\kappa \cdot \lambda=\kappa$.

Proof. Multiply $1 \leq \lambda \leq \kappa$ by κ to get

$$
\kappa \leq \kappa \cdot \lambda \leq \kappa \cdot \kappa=\kappa
$$

Thus $\lambda \cdot \kappa=\kappa$. [Remark: we are using the Cantor-Bernstein Theorem here. Since $\kappa \leq \lambda \cdot \kappa$ and since $\lambda \cdot \kappa \leq \kappa$, in fact they must be equal.]
(b). Prove that if κ and λ are cardinals with $0 \leq \lambda \leq \kappa$ and with κ infinite, then $\kappa+\lambda=\kappa$.

Proof. Adding κ to $0 \leq \lambda \leq \kappa$ gives

$$
\begin{equation*}
\kappa \leq \kappa+\lambda \leq \kappa+\kappa=\kappa \cdot 2 \tag{*}
\end{equation*}
$$

The right hand side is equal to κ by part (a). Thus we must have equality in $\left(^{*}\right)$.
(c). Prove that if κ is an infinite cardinal and if λ is a cardinal such that $2 \leq \lambda \leq 2^{\kappa}$, then $\lambda^{\kappa}=2^{\kappa}$.

Proof. Since $2 \leq \lambda \leq 2^{\kappa}$,

$$
2^{\kappa} \leq \lambda^{\kappa} \leq\left(2^{\kappa}\right)^{\kappa}=2^{\kappa \cdot \kappa}=2^{\kappa}
$$

By Cantor-Bernstein, we must have equality.
7(a). Let $\alpha>0$ be an ordinal and let a and b be nonzero natural numbers. Find the Cantor Normal Form for the ordinal $\gamma=\left(\omega^{\alpha} a+b\right)^{2}$.

Solution (using results from hw problems):

$$
\begin{aligned}
\left(\omega^{\alpha} a+b\right)^{2} & =\left(\omega^{\alpha} a+b\right)\left(\omega^{\alpha} a+b\right) \\
& =\left(\omega^{\alpha} a+b\right) \omega^{\alpha} a+\left(\omega^{\alpha} a+b\right) b \\
& =\omega^{\alpha+\alpha} a+\left(\omega^{\alpha} a b+b\right) \\
& =\omega^{\alpha \cdot 2} a+\omega^{\alpha} a b+b .
\end{aligned}
$$

7(b). Let $\alpha>\beta>0$ be ordinals and let a and b be nonzero natural numbers. Find the Cantor Normal Form for the ordinal $\eta=\left(\omega^{\alpha} a+\omega^{\beta} b\right)^{2}$.

Solution:

$$
\begin{aligned}
\left(\omega^{\alpha} a+\omega^{\beta} b\right)^{2} & =\left(\omega^{\alpha} a+\omega^{\beta} b\right)\left(\omega^{\alpha} a+\omega^{\beta} b\right) \\
& =\left(\omega^{\alpha} a+\omega^{\beta} b\right) \omega^{\alpha} a+\left(\omega^{\alpha} a+\omega^{\beta} b\right) \omega^{\beta} b \\
& =\omega^{\alpha+\alpha} a+\omega^{\alpha+\beta} b \\
& =\omega^{\alpha \cdot 2} a+\omega^{\alpha+\beta} b .
\end{aligned}
$$

7(c). Find the Cantor Normal Form for the ordinal $\delta=(\omega+3)^{(\omega+7)}$.
Solution: I claim that

$$
\begin{equation*}
(\omega+3)^{n}=\omega^{n}+\omega^{n-1} \cdot 3+\cdots+\omega \cdot 3+3 \text { for } n \in \mathbf{N}^{+} . \tag{*}
\end{equation*}
$$

The proof is by induction on n. It is trivially true for $n=1$. Assuming it is true for n, multiply both sides of $\left(^{*}\right)$ on the right to get

$$
\begin{aligned}
(\omega+3)^{n+1} & =\left(\omega^{n}+\omega^{n-1} \cdot 3+\cdots+\omega \cdot 3+3\right) \cdot(\omega+3) \\
& =\left(\omega^{n}+\omega^{n-1} \cdot 3+\cdots+\omega \cdot 3+3\right) \cdot \omega+\left(\omega^{n}+\omega^{n-1} \cdot 3+\cdots+\omega \cdot 3+3\right) \cdot 3 \\
& =\omega^{n+1}+\left(\omega^{n} \cdot 3+\omega^{n-1} \cdot 3+\cdots+\omega \cdot 3+3\right),
\end{aligned}
$$

which is $\left({ }^{*}\right)$ with n replaced by $(n+1)$. This completes the proof by induction of $\left({ }^{*}\right)$.
Taking the supremum of both sides of $\left(^{*}\right)$ over $n \in \mathbf{N}$ gives

$$
(\omega+3)^{\omega}=\omega^{\omega} .
$$

Hence by $\left({ }^{*}\right)$ and (\dagger),

$$
\begin{aligned}
(\omega+3)^{\omega+7} & =(\omega+3)^{\omega} \cdot(\omega+3)^{7} \\
& =\omega^{\omega} \cdot\left(\omega^{7}+\omega^{6} \cdot 3+\omega^{5} \cdot 3+\omega^{4} \cdot 3+\omega^{3} \cdot 3+\omega^{2} \cdot 3+\omega \cdot 3+3\right) \\
& =\omega^{\omega+7}+\omega^{\omega+6} \cdot 3+\omega^{\omega+5} \cdot 3+\omega^{\omega+4} \cdot 3+\omega^{\omega+2} \cdot 3+\omega^{\omega+1} \cdot 3+\omega^{\omega} \cdot 3 .
\end{aligned}
$$

8. Let A be a set and let R be a symmetric relation on A. Prove that there is a set $S \subset A$ such that
(1) If $x \in S$ and $y \in S$ and $x \neq y$, then $(x, y) \in R$.
(2) If $S \subsetneq T \subset A$, then there are elements $x \in T$ and $y \in T$ such that $x \neq y$ and $(x, y) \notin R$.

Solution1 (transfinite recursion): Let $<$ be a well-ordering of A. Define a function $F: A \rightarrow$ $\{0,1\}$ by transfinite recursion as follows:

$$
F(x)= \begin{cases}1 & \text { if } x R y \text { for every } y<x \text { such that } F(y)=1 \\ 0 & \text { if not. }\end{cases}
$$

Now let $S=\{x \in A: F(x)=1\}$.
Suppose $x, y \in S$ with $x \neq y$. Then one of x and y, say y, must be smaller than the other. Since $F(y)=1, y<x$, and $F(x)=1$, it follows that $x R y$ (by definition of x) and therefore that $y R x$ also (by symmetry). This proves (1).
Now suppose $S \subsetneq T \subset A$. Then $T \backslash S$ is nonempty, so it has a least element x. Since $x \notin S$, $F(x)=0$, which means there is a $y<x$ such that $F(y)=1$ and such that $(x, y) \notin R$. Since $F(y)=1, y \in S$ and therefore $y \in T$.
$\mathbf{9 (a)}$. Complete the definition: a well-ordering of a set A is
a linear ordering of A such that every nonempty subset of A has a least element.
Note: "a partial ordering of A such that every nonempty subset of A has a least element" is also correct. [It's equivalent to the usual definition.]

9(b). Suppose that $(W,<)$ is a well-ordered set and that $F: W \rightarrow W$ is an order-preserving mapping, i.e., a mapping such that $x<y$ implies that $F(x)<F(y)$. Prove that $x \leq F(x)$ for every $x \in W$.

Proof. Suppose it's false. Then there is a smallest element a of W for which a is not $\leq F(a)$, i.e., for which $F(a)<a$. Let $b=F(a)$. Then $b<a$, and from $F(a)<a$, it follows that $F(F(a))<F(a)$, i.e, that $F(b)<b$. But that contradicts the choice of a.
$\mathbf{9 (c)}$. For $x \in W$, let $W[x]=\{y \in W: y<x\}$. Let a and b be elements of W. Prove that if $(W[a],<)$ and $(W[b],<)$ are isomorphic, then $a=b$.

Proof. Suppose $b<a$. Let $F: W[a] \rightarrow W[b]$ be an isomorphism. Then F is an order-preserving map from $W[a]$ into $W[a]$, so by part (a) (applied with $W[a]$ in place of W), $x \in F(x)$ for every $x \in W[a]$. In particular, $b \leq F(b)$. But that proves that $F(b) \notin W[b]$, a contradiction (since $F: W[a] \rightarrow W[b]$.
In exactly the same way, we get a contradiction if $a<b$.
Since a is not less than b and b is not less than a, in fact $a=b$.
10. Let $A_{i}(i \in I)$ and $B_{i}(i \in I)$ be families of sets indexed by the same set I. Suppose that $\left|A_{i}\right|<\left|B_{i}\right|$ for every $i \in I$. König's Theorem states that

$$
\left|\cup_{i \in I} A_{i}\right|<\left|\Pi_{i \in I} B_{i}\right|
$$

In this problem you will (if all goes well) prove König's theorem. Let $U=\cup_{i} A_{i}$ and $P=\Pi_{i \in I} B_{i}$. 10(a). Consider any map $F: U \rightarrow P$. Let

$$
C_{i}=\left\{h(i): h=F(a) \text { for some } a \in A_{i}\right\} .
$$

Let $D_{i}=B_{i} \backslash C_{i}$. Explain why D_{i} must be nonempty.
Proof. For each i, consider the map

$$
\begin{aligned}
& \phi_{i}: A_{i} \rightarrow C_{i} \\
& \left.\phi_{i}(a)=F(a)(i) \quad \text { or } F(a)_{i}, \text { if you prefer }\right)
\end{aligned}
$$

Since $\left|A_{i}\right|<\left|B_{i}\right|$, there is no surjective map from A_{i} to B_{i}. Thus C_{i} (which is the image of A_{i} under ϕ_{i}) is not equal to B_{i}, or, equivalently, $B_{i} \backslash C_{i}$ is nonempty.

10(b). Explain why $\Pi_{i \in I} D_{i}$ must be nonempty.
Solution: This is a version of the axiom of choice: if $D_{i}(i \in I)$ is an index family of nonempty sets, then $\Pi_{i \in I} D_{i}$ is nonempty.

10(c). Explain how König's Theorem follows from parts (a) and (b).
Solution: Suppose $F: \cup_{i} A_{i} \rightarrow \Pi_{i} B_{i}$ as in part (a). We claim that F is not surjective. For let $g \in \Pi_{i} D_{i}$ as in parts (a) and (b). (Such a g exists by part (b).) I claim that g is not in the range of F. To see this, suppose $a \in \cup_{i} A_{i}$. Then $a \in A_{i}$ for some i. Then $F(a)_{i} \in C_{i}$, but $g_{i} \in D_{i}=B_{i} \backslash C_{i}$, so $F(a)_{i} \neq g_{i}$. Therefore $F(a) \neq g$.

We have shown that $g \neq F(a)$ for every $a \in \cup_{i} A_{i}$. This proves that g is not in the range of F, so F is not surjective.

Also, $\Pi_{i \in I} B_{i}$ is nonempty (by the axiom of choice). Thus (by problem 3) there is no injective map from $\Pi_{i} B_{i}$ to $\cup_{i} A_{i}$. Thus $\left|\Pi_{i} B_{i}\right|$ is not less than $\left|\cup_{i} A_{i}\right|$, so $\left|\cup_{i} A_{i}\right|<\left|\Pi_{i} B_{i}\right|$.
$\mathbf{1 0 (d)}$. Let $A_{n}(n \in \mathbf{N})$ be subsets of \mathbf{R} such that for each $n,\left|A_{n}\right|<\mathbf{R}$. Using König's Theorem, prove that $\mathbf{R} \neq \cup_{n \in \mathbf{N}} A_{n}$. (Thus \mathbf{R} cannot be the union of countably many subsets each of which has cardinality $<|\mathbf{R}|$. It follows that $|\mathbf{R}|$ cannot be \aleph_{ω}, since \aleph_{ω} is the union of countably many smaller cardinals: $\aleph_{\omega}=\cup_{n \in \mathbf{N}} \aleph_{n}$.)
Solution: By König,

$$
\begin{aligned}
\left|\cup_{n \in \mathbf{N}} A_{n}\right| & <\left|\Pi_{n \in \mathbf{N}} A_{n}\right| \\
& \leq\left|\Pi_{n \in \mathbf{N}} \mathbf{R}\right| \quad\left(\text { because } \Pi_{n \in \mathbf{N}} A_{n} \subset \Pi_{n \in \mathbf{N}} \mathbf{R}\right) \\
& =\left|\mathbf{R}^{\mathbf{N}}\right|=|\mathbf{R}| .
\end{aligned}
$$

Thus $\left|\cup_{n \in \mathbf{N}} A_{n}\right|<|\mathbf{R}|$, so $\cup_{n} A_{n} \neq \mathbf{R}$.
Bonus Problem (optional). Let $F: \omega_{1} \rightarrow \omega_{1}$ be a map such that $F(x) \leq x$ for every $x \in \omega_{1}$ and such that $\{y: F(y)=x\}$ is at most countable for every $x \in \omega_{1}$.
Let C be an unbounded subset of ω_{1} with the following properties:
(1) C is unbounded (or, equivalently, uncountable), and
(2) C is closed, meaning that if S is an nonempty, bounded subset of C, then $\sup S$ is also in C.

Prove that $\{x \in C: F(x)=x\}$ is nonempty.
[Remark: it follows that $\{x \in C: F(x)=x\}$ is unbounded. For if $\alpha \in \omega_{1}$, then the set $C^{\prime}=\{x \in C: x \geq \alpha\}$ is also closed and unbounded and therefore (if the problem is correct) $\left\{x \in C^{\prime}: F(x)=x\right\}$ is nonempty. In other words, for every $\alpha \in \omega_{1}$, the set $\{x \in C: F(x)=x\}$ has elements $\geq \alpha$. Thus $\{x \in C: F(x)=x\}$ is unbounded.]
[Hint: Prove it by contradiction. Suppose there is such a function F. Use that function to define a new function that contradicts a theorem we proved in the lecture about the apple game. Or, show how you could use F to devise a strategy for the apple game in which you never get fined.]

Solution: Since $C \subset \omega_{1}$ is closed, it has the following property:
If C contains any element $\leq \alpha$, it contains a greatest such element.
Suppose there exist an $F: \omega_{1} \rightarrow \omega_{1}$ such that $F(x) \leq x$ for all x, such that $\{y: F(y)=x\}$ is at most countable for every $x \in \omega_{1}$, and such that $F(x)<x$ for all $x \in C$.

Define a new function G as follows:
(1) If $x \in C$, we let $G(x)=F(x)$.
(2) If $x \notin C$ and if there is an element of C less than x, we let $G(x)$ be the largest element of C that is $<x$.
(3) If $x \notin C$ and if there is no element of C less than x, then we let $G(x)$ be 0 .

From (2) and (3), we deduce

$$
\text { If } \alpha \in C \text {, if } x \notin C \text {, and if } x>\alpha \text {, then } G(x) \geq \alpha
$$

I claim that if $x>0$, then $G(x)<x$. If $x \in C$, this is because $G(x)=F(x)<x$. If $x \notin C$ and $x>0$, then $F(x)<x$ by (2) or (3) above.

I also claim that for each $x,\{y: G(y)=x\}$ is countable. Too see this, let α be an element of C that is greater than x. (Such an α exists since C is unbounded.) Then

$$
\begin{aligned}
\{y: G(y)=x\} & =\{y \in C: G(y)=x\} \cup\{y \notin C: G(y)=x\} \\
& =\{y \in C: F(y)=x\} \cup\{y \notin C: G(y)=x\} \\
& \subset\{y: F(y)=x\} \cup\{y: y<\alpha\} \\
& =\{y: F(y)=x\} \cup \alpha .
\end{aligned}
$$

Now $\{y: F(y)=x\}$ is at most countable by hypothesis, and α is at most countable since $\alpha<\omega_{1}$. However, we proved in class that no such G exists.
[If you don't remember that theorem, note that such a G would let us win the apple game. At each time $\alpha>1$, you discard one of the apples that you received at time $G(\alpha)$. Note that in this way you never run out of apples. In fact, if you number the apples you receive at time 0 , you can easily arrange to discard only the even numbered ones of the apples, so that you will have infinitely many left over at the end of the game.]

