MATH 161 HOMEWORK 5 (DUE THUR, FEB 10 IN CLASS)

1. Let X be a set, let F be a set of binary operations on X, and let A be a subset of X. Assume that A and F are nonempty and at most countable. Thus there is a surjection $n \mapsto f_{n}$ from \mathbf{N}^{+}onto F, and a surjection $n \mapsto a_{n}$ from \mathbf{N}^{+}onto A. Define a map $g: \mathbf{N} \rightarrow X$ recursively as by:

$$
g(n)= \begin{cases}a_{k} & \text { if } n=2^{k} \text { for some } k>0 \\ f_{k}(g(p), g(q)) & \text { if } n=3^{k} 5^{p} 7^{q} \text { for some } k>0, p>0, \text { and } q>0 \\ a_{1} & \text { for all other } n \in \mathbf{N}\end{cases}
$$

Let $U=\operatorname{range}(g)$. Note that $A \subset U$.
(1) Prove that U is closed under the operations in F.
(2) Prove that if $A \subset V$ and if V is closed under the operations in F, then $U \subset V$.
[Since the range of a function with countable domain is at most countable, this proves that U is at most countable, without using the axiom of choice. See problems 3 and 4 from hw 4.]
2. Let \mathcal{C} be the set of circles in \mathbf{R}^{2}. Prove that $\mathcal{C} \cong \mathbf{R}$ (i.e., that \mathcal{C} and \mathbf{R} have the same cardinality.)
3. Let \mathcal{D} be the collection of circles C in \mathbf{R}^{2} such that C contains three points with rational coordinates, i.e., three points in \mathbf{Q}^{2}. Prove that \mathcal{D} is countable.
4. If $x \in \mathbf{R}^{n}$ and $r>0$, the open ball with center x and radius r is $\mathbf{B}(x, r)=\left\{y \in \mathbf{R}^{n}:|x-y|<r\right\}$. A set $U \subset \mathbf{R}^{n}$ is called open provided it has the following property: for each $p \in U$, there is an open ball $B(p, r)$ centered at p such that $\mathbf{B}(p, r) \subset U$. Prove that if $U \subset \mathbf{R}^{n}$ is an open set, then

$$
U=\cup\left\{\mathbf{B}(x, r): x \in \mathbf{Q}^{n}, r \in \mathbf{Q}^{+}, \mathbf{B}(x, r) \subset U\right\}
$$

5. Let G be the collection of all open subsets of \mathbf{R}^{n}. Prove that $G \cong \mathbf{R}$.
6. Let \mathcal{S} be the collection of sets V in \mathbf{R}^{2} such with the following property: V is a union of closed balls with radii $=1$ and with centers on the x-axis. Prove that $\mathcal{S} \cong \mathcal{P}(\mathbf{R})$. [Compare problems 5 and 6 : it makes a big difference whether the balls are open or closed!] (The closed ball in \mathbf{R}^{n} of radius r and center p is $\left\{q \in \mathbf{R}^{n}:|q-p| \leq r\right\}$.)
7. Let < be a (strict) partial order on a set X. We say that $<$ is "well-founded" if every nonempty subset of X has a minimal element. [Be sure you understand the difference between "minimal element" and "least element".] Suppose that < is a well-founded partial order on X. Suppose $f: X \rightarrow X$ is a map with the following property: $x<y$ implies $f(x)<f(y)$. Prove that $f(x) \nless x$ for all $x \in X$. In other words, prove that there is no x such that $f(x)<x$.
[Remember that in a partial order, it is possible to have two elements x and y such that $x \neq y, x \nless y$ and $y \nless x$. Here's an example of a well-founded partial order that is not linear. Define an order $<$ on $\mathbf{N} \times \mathbf{N}$ as follows: $(a, b)<(c, d)$ if and only if $a<b$ and $c<d$.]
8. Prove that $\mathbf{R}^{\mathbf{R}} \cong \mathcal{P}(\mathbf{R})$. [Hint: use cardinal arithmetic.]
9. Let $<$ be the linear order on $\mathbf{N}^{\mathbf{N}}$ where $f<g$ if and only if there is an $n \in \mathbf{N}$ such that $f(n)<g(n)$ and $f(i)=g(i)$ for all $i<n$. (See hw 3, problem 8.) Find a nonempty subset of $\mathbf{N}^{\mathbf{N}}$ that has no least element.
10^{*}. Let \mathcal{D} be the set of decreasing functions $f: \mathbf{N} \rightarrow \mathbf{N}$. (A function $f: \mathbf{N} \rightarrow \mathbf{N}$ is called decreasing if $x<y$ implies $f(x) \geq f(y)$ for each $x, y \in \mathbf{N}$.) Let S be a nonempty subset of \mathcal{D}. Show that S has a least element (with respect to the order $<$ in problem 9.)
