MATH 161 HOMEWORK 8 (DUE SATURDAY, MARCH 12)

1. Let κ be an infinite cardinal number. Suppose S is a set such that $|S| \leq \kappa$ and such that for each $A \in S,|A| \leq \kappa$. Prove that

$$
|\cup S| \leq \kappa
$$

(In other words, if U is the union of at most κ sets each of which has cardinality $\leq \kappa$, then U has cardinality $\leq \kappa$.)
2. [Not to turn in.] Let α be an ordinal and κ be a cardinal. Show that $|\alpha|<\kappa$ if and only if $\alpha<\kappa$.
3. (In this problem, exponentiation is ordinal exponentiation.) Let κ be an infinite cardinal number. Suppose that α and β are ordinals each of cardinality at most κ. (Thus $|\alpha| \leq \kappa$ and $|\beta| \leq \kappa$.) Prove that $\left|\alpha^{\beta}\right| \leq \kappa$.

Remark: this shows how extremely different ordinal and cardinal exponentiation are. For example, this problem shows that if α and β are countable, then α^{β} is also countable. On the other hand, if we use cardinal exponentiation, then $\aleph_{0}^{\aleph_{0}}$ is of course uncountable.
4. Let $(L,<)$ be a linearly ordered set. Prove that $<$ is a well-ordering of L if and only there is no function $f: \mathbf{N} \rightarrow L$ such that $f(n+1)<f(n)$ for every n.
5. Let S be a subset of the plane \mathbf{R}^{2} such that no three points in S are collinear. Prove that there is a set $T \subset \mathbf{R}^{2}$ such that (i) $S \subset T$, (ii) no three points in T are collinear, and (iii) if $T \subsetneq V \subset \mathbf{R}^{2}$, then V contains 3 collinear points.
6. Let S be a collection of sets. We say that S has the finite intersection property provided the following holds:

$$
\text { if } A \subset S \text { is finite and nonempty, then } \cap A \text { is nonempty. }
$$

(a). Suppose X is any set and that $S \subset \mathcal{P}(X)$ is a collection of subsets of X such that S has the finite intersection property. Prove there is a set $T \subset \mathcal{P}(X)$ such that (i) $S \subset T$, (ii) T has the finite intersection property, and (iii) if $T \subsetneq V \subset \mathcal{P}(X)$, then V does not have the finite intersection property.
(b). Let $A \subset X$. Prove that either $A \in T$ or $X \backslash A \in T$. (Here T is as in part (a).)
(c). Prove that if $A \in T$ and $B \in T$, then $A \cap B \in T$ (where T is as in part (a).)

Example 1: Suppose that $\cap S$ is nonempty. Let $p \in \cap S$. Then we can let $T=\{A \subset X: p \in A\}$.
Example 2: For $n \in \mathbf{N}$, let $A_{n}=\{k \in \mathbf{N}: k>n\}$, and let $S=\left\{A_{n}: n \in \mathbf{N}\right\}$. Then S has the finite intersection property. In this case, the existence of T is perhaps surprising.

