MATH 161 MIDTERM SOLUTIONS

FEBRUARY 17, 2011

1. Complete the following definitions.
(a). A is a subset of B provided every element of A is an element of B or $x \in A \Longrightarrow x \in B$.
(b). A strict partial ordering of a set A is a transitive, asymmetric relation on A or a relation R on A such that (i) $x R y$ and $y R z$ imply $x R z$, and (ii) there is no x such that $x R x$.
(c). If A is a set, $\cup A$ is the set B such that $x \in B$ if and only if $x \in y$ for some $y \in A$.
(d). A relation R is called transitive provided $x R y$ and $y R z$ imply $x R z$.
(e). Sets A and B are said to be equipotent provided there is a bijection from A to B. [not: " A and B have the same cardinality"]
(f). A relation from A to B is a subset of $A \times B$ or
a set whose elements are the ordered pairs (a, b) with $a \in A$ and $b \in B$.
(g). Let R be a relation from A to B. The inverse relation R^{-1} is $\{(x, y) \in B \times A:(y, x) \in R\}$.
(h). Let R be a relation. We say that R is a function provided $x R y$ and $x R z$ imply $y=z$.
(i). If A and B are sets, then A^{B} is the set of all functions f from B to A or the set of all functions f such that $\operatorname{dom}(f)=B$ and $\operatorname{ran}(f) \subset A$.
(j). The successor of A is $x \cup\{x\}$.
2. State the axiom [schema] of comprehension (i.e., selection).

Solution: Let $P(x)$ be a sentence. If A is a set, then there is a set B such that $x \in B$ if and only if $x \in A$ and $P(x)$.
3. Let \mathcal{L} be the set of all lines in \mathbf{R}^{2}. Prove that $\mathcal{L} \cong \mathbf{R}$.

Solution: Define a map $F: \mathcal{L} \rightarrow \mathbf{R} \times \mathbf{R} \times \mathbf{R}$ by

$$
F(L)= \begin{cases}(m, b, 0) & \text { if } L \text { is the line } y=m x+b \\ (0,0, c) & \text { if } L \text { is the line } x=c\end{cases}
$$

Then F is an injection from \mathcal{L} into $\mathbf{R} \times \mathbf{R} \times \mathbf{R}$, so

$$
\begin{equation*}
|\mathcal{L}| \leq|\mathbf{R} \times \mathbf{R} \times \mathbf{R}|=|\mathbf{R} \times \mathbf{R}|=|\mathbf{R}| \tag{}
\end{equation*}
$$

since we proved that $\mathbf{R} \times \mathbf{R} \cong \mathbf{R}$. Note also that

$$
\begin{equation*}
|\mathbf{R}| \leq|\mathcal{L}| \tag{**}
\end{equation*}
$$

since the map

$$
G: \mathbf{R} \rightarrow \mathcal{L}, \quad G(c)=(\text { the line } x=c)
$$

is one-to-one. By $\left({ }^{*}\right),\left({ }^{* *}\right)$, and Cantor-Bernstein, $|\mathcal{L}|=|\mathbf{R}|$.
Alternate Solution: Let $V \subset \mathcal{L}$ be set of vertical lines, i.e., lines of the form $x=c$. Now $V \cong \mathbf{R}$, since the map

$$
\begin{aligned}
& f: \mathbf{R} \rightarrow V \\
& f(c)=(\text { the line } x=c)
\end{aligned}
$$

is a bijection. Also, $\mathcal{L} \backslash V \cong \mathbf{R} \times \mathbf{R}$ since the map

$$
\begin{aligned}
& g: \mathbf{R} \times \mathbf{R} \rightarrow \mathcal{L} \backslash V \\
& g(m, b)=(\text { the line } y=m x+b)
\end{aligned}
$$

is a bijection. Thus

$$
|\mathcal{L}|=|\mathcal{L} \backslash V|+|V|=|\mathbf{R} \times \mathbf{R}|+|\mathbf{R}|=|\mathbf{R}| \cdot|\mathbf{R}|+|\mathbf{R}|=2^{\aleph_{0}} \cdot 2^{\aleph_{0}}+2^{\aleph_{0}}=2^{\aleph_{0}}+2^{\aleph_{0}}=2^{\aleph_{0}}
$$

4. Let S be the set of all triangles in \mathbf{R}^{2} whose vertices have integer coordinates. Prove that S is countable.

Solution: Let T be the set of $(a, b, c) \in\left(\mathbf{Z}^{2}\right) \times\left(\mathbf{Z}^{2}\right) \times\left(\mathbf{Z}^{2}\right)$ such that a, b, and c are not collinear. Then T is countable since $\mathbf{Z}^{2} \cong \mathbf{Z} \times \mathbf{Z}$ and since the Cartesian product of two countable sets is countable.

Define a map $F: T \rightarrow S$ by letting $F((a, b, c))$ be the triangle with vertices a, b, and c.
Then F is surjective, so S is finite or countable since T is countable. But S is clearly infinite, so S is countable.
5. Let A, B, and C be sets such that B and C are disjoint. Prove that $A^{B \cup C} \cong A^{B} \times A^{C}$ by defining maps $F: A^{B \cup C} \rightarrow A^{B} \times A^{C}$ and $G: A^{B} \times A^{C} \rightarrow A^{B \cup C}$ such that F and G are inverses of each other (and therefore are both bijections.) [You don't need to prove that they're inverses just define the maps.]

Solution: $F(u)=(u|B, u| C), G((u, v))=u \cup v$.
Or G can be described less succinctly: given $(u, v) \in A^{B} \times A^{C}, G(u, v): B \cup C \rightarrow A$ is the map defined by:

$$
G((u, v))(x)= \begin{cases}u(x) & \text { if } x \in B \\ v(x) & \text { if } x \in C\end{cases}
$$

6. Suppose one interprets "set" to mean "natural number" and one interprets " \in " in the usual way. (Thus $n \in m$ if and only if $n<m$.) List the axioms of set theory, and for each axiom, indicate whether it's true or false for this interpretation (and explain). Use the weak forms of the axioms. [You needn't include replacement, choice, or foundation, since those axioms are not in chapters 1-5.]
To avoid confusion, I'll use nset, nsubset, npowerset, etc to indicate what set, subset, powerset, etc, would mean to someone who thinks that "set" means "natural number". Thus a nset is just what we would call a natural number.
Existence: true (e.g. 0).
Extension: true (because the nelements of an nset are the same as its elements.)
Selection: false. For example, $2=\{0,1\}$ and $1=\{0\}$ are nsets (i.e, natural numbers), so if selection were true, then

$$
\{x \in 3: x \notin 1\} \text { (in other words, }\{2,1\} \text {) }
$$

would also be a nset (i.e, natural number). But it is not.
Pair: true. Given any two nsets n and m, there is another nset (say $n+m+1$) that contains n and m as elements.

Note: the strong version of axiom of pairs is false. For example, 2 and 3 are nsets, but any nset that has 2 and 3 as elements will also have the nsets 0 and 1 as elements.
Union: true. Let n be a nset. The axiom of union says that there is a nset u such that

$$
\begin{equation*}
x \in y \text { and } y \in n \text { implies } x \in u . \tag{*}
\end{equation*}
$$

In the interpretation referred to in this problem, x, y, and z should range over nsets (instead of over all sets), and for natural numbers \in is the same as $<$, so we can rewrite $\left(^{*}\right)$ as

$$
x<y \text { and } y<n \text { implies } x<u . .
$$

Any number $u \geq n-1$ has this property. [In fact, the strong form of the axiom of union happens to be true: the nunion of n turns out to be equal to the union of n (namely $n-1$ if $n>0$ and 0 if $n=0$.)
Powerset: True. If n and m are nsets, then n is an nsubset of m if and only if it $n \leq m$. Thus $n+1$ is the npowerset of n.

Some people thought that the powerset axiom was false in the n-universe. For example, they thought that $3=\{0,1,2\}$ cannot have an npowerset because $\{0,2\}$ is a subset of 3 , but it is not an element of any nset. However, note that

$$
\begin{equation*}
(\forall x)(x \subset 3 \Longrightarrow x \in 4) \tag{*}
\end{equation*}
$$

is true in the n-universe, because in the n-universe, x ranges over all nsets, not over all sets; $x=\{0,2\}$ is not a counterexample to $\left(^{*}\right)$ in the n-universe, because it doesn't even exist in the n-universe.

Infinity: "doesn't make sense" or "false" are both acceptable answers:
"Doesn't make sense". One could say successor doesn't make sense, because we defined $S(x)=$ $x \cup\{x\}$, and (in the interpretation suggested in this problem) $\{x\}$ does not makes sense (in general). For example, 5 is a nset, but there is no nset whose only nelement is 5 . Since $\{x\}$ doesn't make sense, neither does $x \cup\{x\}$.
"False". One could argue that the nsuccessor of the nset x is the nset y whose elements are x together the nelements of x. By that reasoning, the nsuccessor of a nset x is just its usual successor, namely $x+1$. So the axiom of infinity would say: there is an nset Z such that (i) $0 \in Z$, and (ii) if $x \in Z$, then $S(z) \in Z$. Of course such as Z would have to contain all the natural numbers as elements. Thus there is no such nset Z.
7. Let A be a set. Prove that there is no surjection from A to $\mathcal{P}(A)$.

Solution: Let $F: A \rightarrow \mathcal{P}(A)$. Let

$$
S=\{x \in A: x \notin F(x)\} .
$$

Then S is a subset of A, so $S \in \mathcal{P}(A)$. Let $x \in A$. Then by definition of S,

$$
x \in S \text { if and only if } x \notin F(x)
$$

Thus S and $F(x)$ do not have the same elements (since x is in one and not in the other.) Thus $S \neq F(x)$. Since this is true for every $x \in A, S$ is not in the range of F, so F is not surjective.
8. (Cardinal arithmetic.) Let f be a function whose domain is \mathbf{N} such that $f(0)=\aleph_{0}$ and such that $f(n+1)=2^{f(n)}$ for every $n \in \mathbf{N}$. (Here $f(n)$ is a cardinal number, and $2^{f(n)}$ refers to cardinal exponentiation.) Prove for every n that if $1 \leq \kappa \leq f(n)$, then $\kappa \cdot f(n)=f(n)$.
Solution: First we prove a lemma:
Lemma. $\aleph_{0} \leq f(n)$ for every n.
Proof of lemma. We prove the lemma by induction on n. Of course $\aleph_{0} \leq \aleph_{0}$, so it is true for $n=0$. Assume it is true for n : $\aleph_{0} \leq f(n)$. Now $f(n+1)=2^{f(n)}>f(n)$, so $f(n+1) \geq \aleph_{0}$.

Now we prove the assertion of the problem by induction on n. The $n=0$ case was proved in class and in the text, so it suffices to prove that if it is true for $n=m$, then it is true for $n=m+1$. So suppose it is true for $n=m$, and suppose that $1 \leq \kappa \leq f(m+1)$, i.e., that

$$
1 \leq \kappa \leq 2^{f(m)}
$$

Multiply by $2^{f(m)}$:

$$
2^{f(m)} \leq \kappa \cdot 2^{f(m)} \leq 2^{f(m)} \cdot 2^{f(m)}=2^{f(m)+f(m)}=2^{2 f(m)}=2^{f(m)}
$$

where $2 f(m)=f(m)$ by the induction hypothesis. (Note we need the lemma to know that $1 \leq 2 \leq f(m)$.)
Remark. Only two people pointed out the need for such a lemma. Of course in this instance, it is rather obvious that $2 \leq f(n)$, and I didn't take off points for failing to prove it.

