MATH 161 PRACTICE PROBLEMS FOR FINAL EXAM

1. Let S be any set. Prove that the power set $\mathcal{P}(S)$ of S has greater cardinality than S.
2. Let S be any set. Prove (without using the power set axiom) that there is an x such that $x \notin S$.

3(a). Prove that $\omega \times \omega$ is countable by giving an one-to-one map from $\omega \times \omega$ to ω.
$\mathbf{3 (b)}$. Let X be the set of all finite subsets of \mathbf{N}. Prove that X is countable by giving a one-to-one map from X into \mathbf{N}.
4. Let $F: X \rightarrow Y$ be a surjective (i.e., "onto") map. Prove that there is an injective (i.e., "one-to-one") map $G: Y \rightarrow X$.
5. Define an order relation R on \mathbf{N} by

$$
R=\{(a, b): a<b \text { and } a-b \text { is even }\} \cup\{(a, b): a \text { is even and } b \text { is odd }\}
$$

(a). Prove that R is a well-ordering of \mathbf{N}.
(b). Find an isomorphism from (\mathbf{N}, R) to an ordinal.
6. Define an order relation $<$ on the power set $\mathcal{P}(\omega)$ of ω as follows. If $A \neq B$, let n be the smallest number in $(A \backslash B) \cup(B \backslash A)$. We let $A<B$ if $n \in B$ and $B<A$ if $n \in A$.

Prove or disprove that $<$ is a well-ordering of $\mathcal{P}(\omega)$.
$7(\mathbf{a})$. Let α be an ordinal number. Let \mathcal{F} be the set of all functions $f: \alpha \rightarrow \alpha$ such that $\{x \in \alpha: f(x) \neq 0\}$ is finite. Define an order relation $<$ on \mathcal{F} as follows:

$$
f<g
$$

means that there is an $a \in \alpha$ such that

$$
f(a)<g(a) \text { and } f(x)=g(x) \text { for all } x>a
$$

(In other words: look at the largest a for which $f(a) \neq g(a)$. Then f and g are in the same order that $f(a)$ and $g(a)$ are.)
Prove that $<$ is a well-ordering of \mathcal{F}.
7(b). Let f and g be in \mathcal{F}. We say that f is the predecessor of g if g is the smallest element greater than f. Which elements of \mathcal{F} do not have predecessors?
BONUS PROBLEM. Let $f: \omega_{1} \rightarrow \omega_{1}$ be a function such that $x<y$ implies $f(x)<f(y)$. Prove that there are uncountably many a 's such that

$$
x<a \Longrightarrow f(x)<a
$$

