MATH 161 PRACTICE PROBLEMS FOR FINAL EXAM

- 1. Let S be any set. Prove that the power set $\mathcal{P}(S)$ of S has greater cardinality than S.
- **2.** Let S be any set. Prove (without using the power set axiom) that there is an x such that $x \notin S$.

3(a). Prove that $\omega \times \omega$ is countable by giving an one-to-one map from $\omega \times \omega$ to ω .

3(b). Let X be the set of all finite subsets of **N**. Prove that X is countable by giving a one-to-one map from X into **N**.

4. Let $F: X \to Y$ be a surjective (i.e., "onto") map. Prove that there is an injective (i.e., "one-to-one") map $G: Y \to X$.

5. Define an order relation R on N by

 $R = \{(a, b) : a < b \text{ and } a - b \text{ is even}\} \cup \{(a, b) : a \text{ is even and } b \text{ is odd}\}$

- (a). Prove that R is a well-ordering of **N**.
- (b). Find an isomorphism from (\mathbf{N}, R) to an ordinal.

6. Define an order relation < on the power set $\mathcal{P}(\omega)$ of ω as follows. If $A \neq B$, let n be the smallest number in $(A \setminus B) \cup (B \setminus A)$. We let A < B if $n \in B$ and B < A if $n \in A$.

Prove or disprove that < is a well-ordering of $\mathcal{P}(\omega)$.

7(a). Let α be an ordinal number. Let \mathcal{F} be the set of all functions $f : \alpha \to \alpha$ such that $\{x \in \alpha : f(x) \neq 0\}$ is finite. Define an order relation < on \mathcal{F} as follows:

f < g

means that there is an $a \in \alpha$ such that

$$f(a) < g(a)$$
 and $f(x) = g(x)$ for all $x > a$.

(In other words: look at the largest a for which $f(a) \neq g(a)$. Then f and g are in the same order that f(a) and g(a) are.)

Prove that < is a well-ordering of \mathcal{F} .

7(b). Let f and g be in \mathcal{F} . We say that f is the **predecessor** of g if g is the smallest element greater than f. Which elements of \mathcal{F} do not have predecessors?

BONUS PROBLEM. Let $f : \omega_1 \to \omega_1$ be a function such that x < y implies f(x) < f(y). Prove that there are uncountably many *a*'s such that

 $x < a \implies f(x) < a.$