MATH 161: SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM

1. Let S be any set. Prove that the power set $\mathcal{P}(S)$ of S has greater cardinality than S.

Solution: The injection $a \in S \mapsto\{a\} \in \mathcal{P}(S)$ shows that $|S| \leq|\mathcal{P}(S)|$. There is no bijection (indeed, no surjection) from S to $\mathcal{P}(S)$ because if $F: S \rightarrow \mathcal{P}(S)$, then $\{a \in S: a \notin F(a)\}$ is not in the image of F. (See midterm solutions for details.)
2. Let S be any set. Prove (without using the power set axiom) that there is an x such that $x \notin S$.

Solution: Let $T=\{x \in S: x \notin x\}$. Thus for each $x \in S, x \in T$ if and only if $x \notin x$. Now suppose $T \in S$. Then $T \in T$ if and only if $T \notin T$, which is a contradiction. Thus $T \notin S$.

3(a). Prove that $\omega \times \omega$ is countable by giving an one-to-one map from $\omega \times \omega$ to ω.
Solution: For example, $f(p, q)=2^{p} 3^{q}$.
$\mathbf{3 (b)}$. Let X be the set of all finite subsets of \mathbf{N}. Prove that X is countable by giving a one-to-one map from X into \mathbf{N}.

Solution: Let p_{n} be the nth prime number (so that $p_{0}=2, p_{1}=3$, etc.) Now define an injection $F: X \rightarrow \mathbf{N}$ by

$$
\begin{aligned}
& F(\emptyset)=1 \\
& F(S)=\Pi_{n \in S} p_{n} \quad \text { if } S \neq \emptyset
\end{aligned}
$$

Alternate solution Define a bijection(!) $G: X \rightarrow \mathbf{N}$ by

$$
G(S)=\sum_{n \in S} 2^{n}
$$

4. Let $F: X \rightarrow Y$ be a surjective (i.e., "onto") map. Prove that there is an injective (i.e., "one-to-one") map $G: Y \rightarrow X$.

Proof. Let ϕ be a choice function for $\mathcal{P}(X)$. Define $G: Y \rightarrow X$ by

$$
G(y)=\phi(\{x \in X: F(x)=y\})
$$

Since F is surjective, $\{x \in X: F(x)=y\}$ is nonempty, so $G(y) \in\{x \in X: F(x)=y\}$, so $F(G(y))=y$. It follows that G is one-to-one. For suppose

$$
G\left(y_{1}\right)=G\left(y_{2}\right)
$$

Then

$$
F\left(G\left(y_{1}\right)\right)=F\left(G\left(y_{2}\right)\right)
$$

so $y_{1}=y_{2}$.
5. Define an order relation R on \mathbf{N} by

$$
R=\{(a, b): a<b \text { and } a-b \text { is even }\} \cup\{(a, b): a \text { is even and } b \text { is odd }\}
$$

(a). Prove that R is a well-ordering of \mathbf{N}.

Proof of Transitivity. Suppose $a R b$ and $b R c$. We must prove that $a R c$. Note that is is true if a, b, and c are all even or all odd, since R agrees with $<$ on the even numbers and on the odd numbers.

Case 1: c is odd. If a is even, we are done (since $a R c$ for every even a and odd c.) Thus we may suppose that a is odd. But then b is also odd since $a R b$. But then a, b, and c are all odd, so transitivity holds.
Case 2: c is even. Then b is even since $b R c$, and therefore a is even since $a R b$. Thus a, b, and c are all even, so transitivity holds.
Proof that $a R a$ can never hold: Suppose $a R a$. Since $a-a$ is even, this implies that $a<a$, a contradiction.

Proof of linearity (i.e., that if $a \neq b$, then $a<b$ or $b<a$: Suppose $a \neq b$. If $a-b$ is even, then the smaller of a and b (in the usual ordering $<$) is also smaller in the R ordering. If $a-b$ is odd, then one of a and b is odd and the other one is even. Of course the even one is smaller in the R-ordering than the odd one.

Proof of well-ordering Suppose S is a nonempty subset of \mathbf{N}. If $\{x \in S: x$ is even $\}$ is nonempty, then it contains a least element a for the standard ordering $<$. Since the evens precede the odds in the ordering R, a is also the least element in S for the ordering R. If $\{x \in S: x$ is even $\}$ is empty, then all elements of S are odd, and so the least element of S for the standard ordering $<$ is also a least element for the ordering R.
(b). Find an isomorphism from (\mathbf{N}, R) to an ordinal.

Solution: Define $F: \mathbf{N} \rightarrow \omega \cdot 2$ by

$$
\begin{aligned}
F(2 n) & =n \\
F(2 n+1) & =\omega+n
\end{aligned}
$$

for every $n \in \mathbf{N}$.
Remark: How do you find the isomorphism? The smallest element of (\mathbf{N}, R), namely 0 , has to map to the smallest ordinal, i.e., to 0 . The next smallest element of (\mathbf{N}, R), namely 2 , has to map to the next smallest ordinal, i.e., 1. Continuing in the way, we see that $F(2 n)=n$ for every $n \in \mathbf{N}$. Now we've "used up" the even numbers in (\mathbf{N}, R) and all the finite ordinals (in the range.) So we have to map the first element of (\mathbf{N}, R) after the evens to the first ordinal after all the finite ordinals. That is, $F(1)=\omega$, and so on.
6. Define an order relation $<$ on the power set $\mathcal{P}(\omega)$ of ω as follows. If $A \neq B$, let n be the smallest number in $(A \backslash B) \cup(B \backslash A)$. We let $A<B$ if $n \in B$ and $B<A$ if $n \in A$.
Prove or disprove that $<$ is a well-ordering of $\mathcal{P}(\omega)$.
Solution It is not a well-ordering. Consider, for example, the set S of one-element subsets of ω. Then S is a nonempty subset of $\mathcal{P}(\omega)$, but S has no least element since

$$
\{n+1\}<\{n\} .
$$

7 (a). Let α be an ordinal number. Let \mathcal{F} be the set of all functions $f: \alpha \rightarrow \alpha$ such that $\{x \in \alpha: f(x) \neq 0\}$ is finite. Define an order relation $<$ on \mathcal{F} as follows:

$$
f<g
$$

means that there is an $a \in \alpha$ such that

$$
f(a)<g(a) \text { and } f(x)=g(x) \text { for all } x>a
$$

(In other words: look at the largest a for which $f(a) \neq g(a)$. Then f and g are in the same order that $f(a)$ and $g(a)$ are.)
Prove that $<$ is a well-ordering of \mathcal{F}.
Solution 1: For $f \in \mathcal{F}$, the set $\{x: f(x)>0\}$ is finite, so it has a greatest element $m(f)$.
Now suppose the ordering is not a well-ordering. Then (see hw8) there is a strictly sequence $f_{i}(i \in \mathbf{N})$ in \mathcal{F} with $f_{1}>f_{2}>f_{3}>\ldots$ Consider the set Z of all $m\left(f_{1}\right)$ where f_{1}, f_{2}, \ldots is any strictly decreasing sequence in \mathcal{F}. Since Z is nonempty, it has a least element x. By definition, there is a sequence f_{1}, f_{2}, \ldots in \mathcal{F} with $f_{1}>f_{2}>\ldots$ and with $m\left(f_{1}\right)=x$.

Since $f_{1}>f_{2}>\ldots$, we have $x=m\left(f_{1}\right) \geq m\left(f_{2}\right) \geq m\left(f_{3}\right) \geq \ldots$. I claim that $m\left(f_{i}\right)=x$ for all i. Proof: if $m\left(f_{i}\right)<x$ (for some i) then $f_{i}, f_{i+1}, f_{i+2}, \ldots$ would be a decreasing sequence in \mathcal{F} with $m\left(f_{i}\right)<x$, contradicting the choice of x. The contradiction proves that $m\left(f_{i}\right)=x$ for all i.

Thus $f_{1}(x) \geq f_{2}(x) \geq f_{3}(x) \geq \ldots$. Since α is well-ordered, the set $\left\{f_{1}(x), f_{2}(x), \ldots\right\}$ must have a least element $f_{k}(x)$. Thus $f_{k}(x)=f_{k+1}(x)=f_{k+2}(x)=\ldots$. We may assume that $k=1$. (Just drop the first $k-1$ terms in the sequence.)
Now define a new sequence g_{i} by

$$
g_{i}(t)= \begin{cases}0 & \text { if } t=x \\ f_{i}(t) & \text { if } t \neq x\end{cases}
$$

Then $g_{1}>g_{2}>\ldots$ and $m\left(g_{1}\right)<x$, contradicting the choice of x.

Solution 2: More generally, let \mathcal{F} be the set of maps f from α to γ (where α and γ are ordinals) such that $\{x \in \alpha: f(x) \neq 0\}$ is finite. One way to prove that a set $(\mathcal{F},<)$ is well-ordered is by giving an isomorphism from $(\mathcal{F},<)$ to some well-ordered set. Since every subset of a well-ordered set is well-ordered, it's enough to give an order-preserving map ϕ from \mathcal{F} into some well-ordered set. (In other words, we don't have to check that ϕ is surjective.) In particular, it's enough to define a map from \mathcal{F} to some set of ordinals such that $f<g$ if and only if $\phi(f)<\phi(g)$. We can do this as follows. (Note: it's very similar to the solution to problem 6 of hw7.) If $f \in \mathcal{F}$, we define the ordinal $\phi(f)$ by

$$
\phi(f)=\sum_{\{\beta \in \alpha: f(\beta) \neq 0\}} \gamma^{\beta} \cdot f(\beta) \quad((\text { decreasing } \beta \prime s))
$$

Note that since ordinal addition is not commutative, we have to specify the order of the terms we're adding. Here (as the phrase "decreasing β 's" suggests), we order the terms with the highest β first, etc. In other words, if

$$
\{\beta \in \alpha: f(\beta) \neq 0\}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}
$$

where $\beta_{n}>\cdots>\beta_{2}>\beta_{1}$, we let

$$
\phi(f)=\gamma^{\beta_{n}} \cdot f\left(\beta_{n}\right)+\cdots+\gamma^{\beta_{2}} \cdot f\left(\beta_{2}\right)+\gamma^{\beta_{1}} \cdot f\left(\beta_{1}\right)
$$

With a little work, one can show that $f<g$ if and only if $\phi(f)<\phi(g)$.
(With some more work, one can show that this map is actually an isomorphism from $(\mathcal{F},<)$ to the ordinal γ^{α}.)
$7(\mathbf{b})$. Let f and g be in \mathcal{F}. We say that f is the predecessor of g if g is the smallest element greater than f. Which elements of \mathcal{F} do not have predecessors?

Solution: Let $f \in \mathcal{F}$. The "successor" of f, i.e., the smallest element of \mathcal{F} that is $>f$, is the function g given by

$$
\begin{aligned}
g(x) & =f(x) \quad \text { if } x \neq 0 \\
g(0) & =f(0)+1
\end{aligned}
$$

Thus $g(0) \neq 0$. So if g has a predecessor, then $g(0) \neq 0$.
Conversely, if $g(0) \neq 0$, then g has a predecessor, namely the function f given by

$$
\begin{aligned}
& f(x)=g(x) \quad \text { if } x \neq 0 \\
& f(0)=g(0)-1
\end{aligned}
$$

BONUS PROBLEM. Let $f: \omega_{1} \rightarrow \omega_{1}$ be a function such that $x<y$ implies $f(x)<f(y)$. Prove that there are uncountably many a 's such that

$$
x<a \Longrightarrow f(x)<a
$$

Solution: Consider the following strategy for the apple game. For each x, if $x<f(x)$, then the set $\{t: x<t \leq f(x)\}$ is finite or countable. Thus there is a one-one map g_{x} from this set into the set of apples received at stage x.

Here's what you do at stage t of the game. First, if $t<f(x)$ for some $x<t$, consider the smallest such x, and throw away apple $g_{x}(t)$. If there is no such x, choose any apple to throw away (if you have some) or get fined (if you don't).

Thus you never get fined at times t such that $x<t \leq f(x)$. In other words, you will only get fined at times a such that $x<a$ implies $f(x)<a$. Since you get uncountably many fines (as we know from class), there must be an uncountable set of such a 's.

