MATH 161: SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM

1. Let S be any set. Prove that the power set $\mathcal{P}(S)$ of S has greater cardinality than S.

Solution: The injection $a \in S \mapsto \{a\} \in \mathcal{P}(S)$ shows that $|S| \leq |\mathcal{P}(S)|$. There is no bijection (indeed, no surjection) from S to $\mathcal{P}(S)$ because if $F: S \to \mathcal{P}(S)$, then $\{a \in S : a \notin F(a)\}$ is not in the image of F. (See midterm solutions for details.)

2. Let S be any set. Prove (without using the power set axiom) that there is an x such that $x \notin S$.

Solution: Let $T = \{x \in S : x \notin x\}$. Thus for each $x \in S$, $x \in T$ if and only if $x \notin x$. Now suppose $T \in S$. Then $T \in T$ if and only if $T \notin T$, which is a contradiction. Thus $T \notin S$.

3(a). Prove that $\omega \times \omega$ is countable by giving an one-to-one map from $\omega \times \omega$ to ω .

Solution: For example, $f(p,q) = 2^p 3^q$.

3(b). Let X be the set of all finite subsets of **N**. Prove that X is countable by giving a one-to-one map from X into **N**.

Solution: Let p_n be the *n*th prime number (so that $p_0 = 2, p_1 = 3, \text{ etc.}$) Now define an injection $F: X \to \mathbf{N}$ by

$$F(\emptyset) = 1$$

$$F(S) = \prod_{n \in S} p_n \quad \text{if } S \neq \emptyset$$

Alternate solution Define a bijection(!) $G: X \to \mathbf{N}$ by

$$G(S) = \sum_{n \in S} 2^n.$$

4. Let $F: X \to Y$ be a surjective (i.e., "onto") map. Prove that there is an injective (i.e., "one-to-one") map $G: Y \to X$.

Proof. Let ϕ be a choice function for $\mathcal{P}(X)$. Define $G: Y \to X$ by

$$G(y)=\phi(\{x\in X:F(x)=y\}).$$

Since F is surjective, $\{x \in X : F(x) = y\}$ is nonempty, so $G(y) \in \{x \in X : F(x) = y\}$, so F(G(y)) = y. It follows that G is one-to-one. For suppose $G(y_1) = G(y_2)$.

Then

$$F(G(y_1)) = F(G(y_2))$$

so $y_1 = y_2$.

5. Define an order relation R on **N** by

 $R = \{(a, b) : a < b \text{ and } a - b \text{ is even}\} \cup \{(a, b) : a \text{ is even and } b \text{ is odd}\}$

(a). Prove that R is a well-ordering of **N**.

Proof of Transitivity. Suppose aRb and bRc. We must prove that aRc. Note that is is true if a, b, and c are all even or all odd, since R agrees with < on the even numbers and on the odd numbers.

Case 1: c is odd. If a is even, we are done (since aRc for every even a and odd c.) Thus we may suppose that a is odd. But then b is also odd since aRb. But then a, b, and c are all odd, so transitivity holds.

Case 2: c is even. Then b is even since bRc, and therefore a is even since aRb. Thus a, b, and c are all even, so transitivity holds.

Proof that aRa can never hold: Suppose aRa. Since a - a is even, this implies that a < a, a contradiction.

Proof of linearity (i.e., that if $a \neq b$, then a < b or b < a: Suppose $a \neq b$. If a - b is even, then the smaller of a and b (in the usual ordering <) is also smaller in the R ordering. If a - b is odd, then one of a and b is odd and the other one is even. Of course the even one is smaller in the R-ordering than the odd one.

Proof of well-ordering Suppose S is a nonempty subset of N. If $\{x \in S : x \text{ is even}\}$ is nonempty, then it contains a least element a for the standard ordering <. Since the evens precede the odds in the ordering R, a is also the least element in S for the ordering R. If $\{x \in S : x \text{ is even}\}$ is empty, then all elements of S are odd, and so the least element of S for the standard ordering < is also a least element for the ordering R. \Box

(b). Find an isomorphism from (\mathbf{N}, R) to an ordinal.

Solution: Define $F : \mathbf{N} \to \omega \cdot 2$ by

$$F(2n) = n$$
$$F(2n+1) = \omega + n$$

for every $n \in \mathbf{N}$.

Remark: How do you find the isomorphism? The smallest element of (\mathbf{N}, R) , namely 0, has to map to the smallest ordinal, i.e., to 0. The next smallest element of (\mathbf{N}, R) , namely 2, has to map to the next smallest ordinal, i.e., 1. Continuing in the way, we see that F(2n) = n for every $n \in \mathbf{N}$. Now we've "used up" the even numbers in (\mathbf{N}, R) and all the finite ordinals (in the range.) So we have to map the first element of (\mathbf{N}, R) after the evens to the first ordinal after all the finite ordinals. That is, $F(1) = \omega$, and so on.

6. Define an order relation < on the power set $\mathcal{P}(\omega)$ of ω as follows. If $A \neq B$, let n be the smallest number in $(A \setminus B) \cup (B \setminus A)$. We let A < B if $n \in B$ and B < A if $n \in A$.

Prove or disprove that < is a well-ordering of $\mathcal{P}(\omega)$.

Solution It is not a well-ordering. Consider, for example, the set S of one-element subsets of ω . Then S is a nonempty subset of $\mathcal{P}(\omega)$, but S has no least element since

$$\{n+1\} < \{n\}.$$

7(a). Let α be an ordinal number. Let \mathcal{F} be the set of all functions $f : \alpha \to \alpha$ such that $\{x \in \alpha : f(x) \neq 0\}$ is finite. Define an order relation < on \mathcal{F} as follows:

f < g

means that there is an $a \in \alpha$ such that

f(a) < g(a) and f(x) = g(x) for all x > a.

(In other words: look at the largest a for which $f(a) \neq g(a)$. Then f and g are in the same order that f(a) and g(a) are.)

Prove that < is a well-ordering of \mathcal{F} .

Solution 1: For $f \in \mathcal{F}$, the set $\{x : f(x) > 0\}$ is finite, so it has a greatest element m(f).

Now suppose the ordering is not a well-ordering. Then (see hw8) there is a strictly sequence f_i ($i \in \mathbb{N}$) in \mathcal{F} with $f_1 > f_2 > f_3 > \ldots$. Consider the set Z of all $m(f_1)$ where f_1, f_2, \ldots is any strictly decreasing sequence in \mathcal{F} . Since Z is nonempty, it has a least element x. By definition, there is a sequence f_1, f_2, \ldots in \mathcal{F} with $f_1 > f_2 > \ldots$ and with $m(f_1) = x$.

Since $f_1 > f_2 > \ldots$, we have $x = m(f_1) \ge m(f_2) \ge m(f_3) \ge \ldots$ I claim that $m(f_i) = x$ for all *i*. Proof: if $m(f_i) < x$ (for some *i*) then $f_i, f_{i+1}, f_{i+2}, \ldots$ would be a decreasing sequence in \mathcal{F} with $m(f_i) < x$, contradicting the choice of *x*. The contradiction proves that $m(f_i) = x$ for all *i*.

Thus $f_1(x) \ge f_2(x) \ge f_3(x) \ge \dots$ Since α is well-ordered, the set $\{f_1(x), f_2(x), \dots\}$ must have a least element $f_k(x)$. Thus $f_k(x) = f_{k+1}(x) = f_{k+2}(x) = \dots$ We may assume that k = 1. (Just drop the first k - 1 terms in the sequence.)

Now define a new sequence g_i by

$$g_i(t) = \begin{cases} 0 & \text{if } t = x \\ f_i(t) & \text{if } t \neq x \end{cases}$$

Then $g_1 > g_2 > \ldots$ and $m(g_1) < x$, contradicting the choice of x.

Solution 2: More generally, let \mathcal{F} be the set of maps f from α to γ (where α and γ are ordinals) such that $\{x \in \alpha : f(x) \neq 0\}$ is finite. One way to prove that a set $(\mathcal{F}, <)$ is well-ordered is by giving an isomorphism from $(\mathcal{F}, <)$ to some well-ordered set. Since every subset of a well-ordered set is well-ordered, it's enough to give an order-preserving map ϕ from \mathcal{F} into some well-ordered set. (In other words, we don't have to check that ϕ is surjective.) In particular, it's enough to define a map from \mathcal{F} to some set of ordinals such that f < g if and only if $\phi(f) < \phi(g)$. We can do this as follows. (Note: it's very similar to the solution to problem 6 of hw7.) If $f \in \mathcal{F}$, we define the ordinal $\phi(f)$ by

$$\phi(f) = \sum_{\{\beta \in \alpha: f(\beta) \neq 0\}} \gamma^{\beta} \cdot f(\beta) \qquad ((\text{decreasing } \beta' s))$$

Note that since ordinal addition is not commutative, we have to specify the order of the terms we're adding. Here (as the phrase "decreasing β 's" suggests), we order the terms with the highest β first, etc. In other words, if

$$\{\beta \in \alpha : f(\beta) \neq 0\} = \{\beta_1, \beta_2, \dots, \beta_n\}$$

where $\beta_n > \cdots > \beta_2 > \beta_1$, we let

$$\phi(f) = \gamma^{\beta_n} \cdot f(\beta_n) + \dots + \gamma^{\beta_2} \cdot f(\beta_2) + \gamma^{\beta_1} \cdot f(\beta_1)$$

With a little work, one can show that f < g if and only if $\phi(f) < \phi(g)$.

(With some more work, one can show that this map is actually an isomorphism from $(\mathcal{F}, <)$ to the ordinal γ^{α} .)

7(b). Let f and g be in \mathcal{F} . We say that f is the **predecessor** of g if g is the smallest element greater than f. Which elements of \mathcal{F} do not have predecessors?

Solution: Let $f \in \mathcal{F}$. The "successor" of f, i.e., the smallest element of \mathcal{F} that is > f, is the function g given by

$$g(x) = f(x)$$
 if $x \neq 0$
 $g(0) = f(0) + 1.$

Thus $g(0) \neq 0$. So if g has a predecessor, then $g(0) \neq 0$.

Conversely, if $g(0) \neq 0$, then g has a predecessor, namely the function f given by

$$f(x) = g(x)$$
 if $x \neq 0$
 $f(0) = g(0) - 1$.

BONUS PROBLEM. Let $f : \omega_1 \to \omega_1$ be a function such that x < y implies f(x) < f(y). Prove that there are uncountably many a's such that

$$x < a \implies f(x) < a.$$

Solution: Consider the following strategy for the apple game. For each x, if x < f(x), then the set $\{t : x < t \le f(x)\}$ is finite or countable. Thus there is a one-one map g_x from this set into the set of apples received at stage x.

Here's what you do at stage t of the game. First, if t < f(x) for some x < t, consider the smallest such x, and throw away apple $g_x(t)$. If there is no such x, choose any apple to throw away (if you have some) or get fined (if you don't).

Thus you never get fined at times t such that $x < t \le f(x)$. In other words, you will only get fined at times a such that x < a implies f(x) < a. Since you get uncountably many fines (as we know from class), there must be an uncountable set of such a's.