
MATH 161: SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM

1. Let S be any set. Prove that the power set P(S) of S has greater cardinality than S.

Solution: The injection a ∈ S 7→ {a} ∈ P(S) shows that |S| ≤ |P(S)|. There is no bijection (indeed, no surjection)
from S to P(S) because if F : S → P(S), then {a ∈ S : a /∈ F (a)} is not in the image of F . (See midterm solutions
for details.)

2. Let S be any set. Prove (without using the power set axiom) that there is an x such that x /∈ S.

Solution: Let T = {x ∈ S : x /∈ x}. Thus for each x ∈ S, x ∈ T if and only if x /∈ x. Now suppose T ∈ S. Then
T ∈ T if and only if T /∈ T , which is a contradiction. Thus T /∈ S.

3(a). Prove that ω × ω is countable by giving an one-to-one map from ω × ω to ω.

Solution: For example, f(p, q) = 2p 3q.

3(b). Let X be the set of all finite subsets of N. Prove that X is countable by giving a one-to-one map from X
into N.

Solution: Let pn be the nth prime number (so that p0 = 2, p1 = 3, etc.) Now define an injection F : X → N by

F (∅) = 1

F (S) = Πn∈Spn if S 6= ∅

Alternate solution Define a bijection(!) G : X → N by

G(S) =
∑
n∈S

2n.

4. Let F : X → Y be a surjective (i.e., “onto”) map. Prove that there is an injective (i.e., “one-to-one”) map
G : Y → X.

Proof. Let φ be a choice function for P(X). Define G : Y → X by

G(y) = φ({x ∈ X : F (x) = y}).

Since F is surjective, {x ∈ X : F (x) = y} is nonempty, so G(y) ∈ {x ∈ X : F (x) = y}, so F (G(y)) = y. It follows
that G is one-to-one. For suppose

G(y1) = G(y2).

Then

F (G(y1)) = F (G(y2))

so y1 = y2. �

5. Define an order relation R on N by

R = {(a, b) : a < b and a− b is even} ∪ {(a, b) : a is even and b is odd}

(a). Prove that R is a well-ordering of N.

Proof of Transitivity. Suppose aRb and bRc. We must prove that aRc. Note that is is true if a, b, and c are all
even or all odd, since R agrees with < on the even numbers and on the odd numbers.

Case 1: c is odd. If a is even, we are done (since aRc for every even a and odd c.) Thus we may suppose that a is
odd. But then b is also odd since aRb. But then a, b, and c are all odd, so transitivity holds.

Case 2: c is even. Then b is even since bRc, and therefore a is even since aRb. Thus a, b, and c are all even, so
transitivity holds. �

Proof that aRa can never hold: Suppose aRa. Since a− a is even, this implies that a < a, a contradiction. �
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Proof of linearity (i.e., that if a 6= b, then a < b or b < a: Suppose a 6= b. If a− b is even, then the smaller of
a and b (in the usual ordering <) is also smaller in the R ordering. If a− b is odd, then one of a and b is odd and
the other one is even. Of course the even one is smaller in the R-ordering than the odd one. �

Proof of well-ordering Suppose S is a nonempty subset of N. If {x ∈ S : x is even} is nonempty, then it contains
a least element a for the standard ordering <. Since the evens precede the odds in the ordering R, a is also the
least element in S for the ordering R. If {x ∈ S : x is even} is empty, then all elements of S are odd, and so the
least element of S for the standard ordering < is also a least element for the ordering R. �

(b). Find an isomorphism from (N, R) to an ordinal.

Solution: Define F : N→ ω · 2 by

F (2n) = n

F (2n+ 1) = ω + n

for every n ∈ N.

Remark: How do you find the isomorphism? The smallest element of (N, R), namely 0, has to map to the smallest
ordinal, i.e., to 0. The next smallest element of (N, R), namely 2, has to map to the next smallest ordinal, i.e., 1.
Continuing in the way, we see that F (2n) = n for every n ∈ N. Now we’ve “used up” the even numbers in (N, R)
and all the finite ordinals (in the range.) So we have to map the first element of (N, R) after the evens to the first
ordinal after all the finite ordinals. That is, F (1) = ω, and so on.

6. Define an order relation < on the power set P(ω) of ω as follows. If A 6= B, let n be the smallest number in
(A \B) ∪ (B \A). We let A < B if n ∈ B and B < A if n ∈ A.

Prove or disprove that < is a well-ordering of P(ω).

Solution It is not a well-ordering. Consider, for example, the set S of one-element subsets of ω. Then S is a
nonempty subset of P(ω), but S has no least element since

{n+ 1} < {n}.

7(a). Let α be an ordinal number. Let F be the set of all functions f : α → α such that {x ∈ α : f(x) 6= 0} is
finite. Define an order relation < on F as follows:

f < g

means that there is an a ∈ α such that

f(a) < g(a) and f(x) = g(x) for all x > a.

(In other words: look at the largest a for which f(a) 6= g(a). Then f and g are in the same order that f(a) and
g(a) are.)

Prove that < is a well-ordering of F .

Solution 1: For f ∈ F , the set {x : f(x) > 0} is finite, so it has a greatest element m(f).

Now suppose the ordering is not a well-ordering. Then (see hw8) there is a strictly sequence fi (i ∈ N) in F with
f1 > f2 > f3 > . . . . Consider the set Z of all m(f1) where f1, f2, . . . is any strictly decreasing sequence in F . Since
Z is nonempty, it has a least element x. By definition, there is a sequence f1, f2, . . . in F with f1 > f2 > . . . and
with m(f1) = x.

Since f1 > f2 > . . . , we have x = m(f1) ≥ m(f2) ≥ m(f3) ≥ . . . . I claim that m(fi) = x for all i. Proof: if
m(fi) < x (for some i) then fi, fi+1, fi+2, . . . would be a decreasing sequence in F with m(fi) < x, contradicting
the choice of x. The contradiction proves that m(fi) = x for all i.

Thus f1(x) ≥ f2(x) ≥ f3(x) ≥ .... Since α is well-ordered, the set {f1(x), f2(x), . . . } must have a least element
fk(x). Thus fk(x) = fk+1(x) = fk+2(x) = . . . . We may assume that k = 1. (Just drop the first k − 1 terms in the
sequence.)

Now define a new sequence gi by

gi(t) =

{
0 if t = x

fi(t) if t 6= x

Then g1 > g2 > . . . and m(g1) < x, contradicting the choice of x. �
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Solution 2: More generally, let F be the set of maps f from α to γ (where α and γ are ordinals) such that
{x ∈ α : f(x) 6= 0} is finite. One way to prove that a set (F , <) is well-ordered is by giving an isomorphism
from (F , <) to some well-ordered set. Since every subset of a well-ordered set is well-ordered, it’s enough to give
an order-preserving map φ from F into some well-ordered set. (In other words, we don’t have to check that φ is
surjective.) In particular, it’s enough to define a map from F to some set of ordinals such that f < g if and only if
φ(f) < φ(g). We can do this as follows. (Note: it’s very similar to the solution to problem 6 of hw7.) If f ∈ F , we
define the ordinal φ(f) by

φ(f) =
∑

{β∈α:f(β)6=0}

γβ · f(β) ((decreasing β’s)).

Note that since ordinal addition is not commutative, we have to specify the order of the terms we’re adding. Here
(as the phrase “decreasing β’s” suggests), we order the terms with the highest β first, etc. In other words, if

{β ∈ α : f(β) 6= 0} = {β1, β2, . . . , βn}
where βn > · · · > β2 > β1, we let

φ(f) = γβn · f(βn) + · · ·+ γβ2 · f(β2) + γβ1 · f(β1).

With a little work, one can show that f < g if and only if φ(f) < φ(g).

(With some more work, one can show that this map is actually an isomorphism from (F , <) to the ordinal γα.)

7(b). Let f and g be in F . We say that f is the predecessor of g if g is the smallest element greater than f .
Which elements of F do not have predecessors?

Solution: Let f ∈ F . The “successor” of f , i.e., the smallest element of F that is > f , is the function g given by

g(x) = f(x) if x 6= 0

g(0) = f(0) + 1.

Thus g(0) 6= 0. So if g has a predecessor, then g(0) 6= 0.

Conversely, if g(0) 6= 0, then g has a predecessor, namely the function f given by

f(x) = g(x) if x 6= 0

f(0) = g(0)− 1.

BONUS PROBLEM. Let f : ω1 → ω1 be a function such that x < y implies f(x) < f(y). Prove that there are
uncountably many a’s such that

x < a =⇒ f(x) < a.

Solution: Consider the following strategy for the apple game. For each x, if x < f(x), then the set {t : x < t ≤ f(x)}
is finite or countable. Thus there is a one-one map gx from this set into the set of apples received at stage x.

Here’s what you do at stage t of the game. First, if t < f(x) for some x < t, consider the smallest such x, and
throw away apple gx(t). If there is no such x, choose any apple to throw away (if you have some) or get fined (if
you don’t).

Thus you never get fined at times t such that x < t ≤ f(x). In other words, you will only get fined at times a such
that x < a implies f(x) < a. Since you get uncountably many fines (as we know from class), there must be an
uncountable set of such a’s. �


