THE CANTOR-BERNSTEIN THEOREM

Theorem (Cantor-Bernstein Theorem). Suppose that $f: A \rightarrow B$ and $g: B \rightarrow A$ are injective maps. Then there is a bijection from A to B.

Idea of proof: We try find a bijection $H: A \rightarrow B$ such that for each $x \in A$,

$$
\begin{equation*}
\text { either } H(x)=f(x) \text { or } H(x)=g^{-1}(x) \tag{*}
\end{equation*}
$$

Now suppose $x_{0} \in A \backslash g[B]$. Then $g^{-1}\left(x_{0}\right)$ does not exist, so $\left(^{*}\right)$ forces us to let

$$
H\left(x_{0}\right)=f\left(x_{0}\right)
$$

Now let $x_{1}=(g \circ f)\left(x_{0}\right)=g\left(f\left(x_{0}\right)\right)$. Since $x_{1} \in \operatorname{ran}(g)$ and $x_{0} \notin \operatorname{ran}(g)$, so $x_{0} \neq x_{1}$. We can't let $H\left(x_{1}\right)=g^{-1}\left(x_{1}\right)$, because then H would map both x_{0} and x_{1} to $f\left(x_{0}\right)$. Thus we are forced to let $H\left(x_{1}\right)=f\left(x_{1}\right)$. Similarly, if we let $x_{n}=(g \circ f)^{n}\left(x_{0}\right)$, we are forced to let $H\left(x_{n}\right)=f\left(x_{n}\right)$. These considerations suggest the following proof.

Proof. Define sets C_{n} recursively as follows:
(1) $C_{0}=A \backslash g[B]$.
(2) $C_{n+1}=g\left[f\left[C_{n}\right]\right]$.

Let $C=\cup_{n \in \mathbf{N}} C_{n}$. Since g is one-to-one, its inverse g^{-1} is also a function. Note that $x \in A \backslash C$ implies that $x \in A \backslash C_{0}=g[B]$. Thus

$$
A \backslash C \subset \operatorname{dom}\left(g^{-1}\right)
$$

Now define a map $H: A \rightarrow B$ by:

$$
H(x)= \begin{cases}f(x) & \text { if } x \in C \\ g^{-1}(x) & \text { if } x \in A \backslash C\end{cases}
$$

First we prove that $H: A \rightarrow B$ is onto. Let $y \in B$. Either $g(y) \in C$ or $g(y) \in A \backslash C$.
Case 1: If $g(y) \in C$, then $g(y) \in C_{n}$ for some $n \in \mathbf{N}$. That n cannot be 0 , because $C_{0}=A \backslash g[B]$. Thus $g(y) \in C_{k+1}$ for some $k \in \mathbf{N}$, so

$$
g(y)=g(f(x)) \text { for some } x \in C_{k}
$$

Since g is one-to-one, this implies that $y=f(x)$. Since $x \in C, f(x)=H(x)$, so $y=H(x)$ and thus $y \in \operatorname{ran}(H)$.
Case 2: If $g(y) \notin C$, then $H(g(y))=g^{-1}(g(y))=y$, so $y \in \operatorname{ran}(H)$.
We have shown that each $y \in B$ is in the range of H, and thus that $H: A \rightarrow B$ is onto.
To show that H is one-to-one, suppose that $H(x)=H(y)$. We must show that $x=y$. There are three cases:
Case 1: $x, y \in C$. Then $H(x)=f(x)$ and $H(y)=f(y)$, so $f(x)=f(y)$ and therefore $x=y$ since f is one-to-one.
Case 2: $x, y \in A \backslash C$. Then $H(x)=g^{-1}(x)$ and $H(y)=g^{-1}(y)$, so $g^{-1}(x)=g^{-1}(y)$ and therefore $x=$ $g\left(g^{-1}(x)\right)=g\left(g^{-1}(y)\right)=y$.

Case 3: One of x and y is in C and the other is in $A \backslash C$. We may suppose $x \in C$ and $y \in A \backslash C$. Then $H(x)=f(x)$ and $H(y)=g^{-1}(y)$, so

$$
f(x)=g^{-1}(y)
$$

and therefore

$$
g(f(x))=y
$$

Since $x \in C, g(f(x)) \in C$, so $y \in C$, which is a contradiction. (Thus case 3 cannot occur.)

[^0]
[^0]: Date: January 27, 2011.

