MATH 161 LECTURE NOTES: BASIC FACTS ABOUT ORDINAL ARITHMETIC

Here we summarize the basic facts about ordinal arithmetic:

(1) $\alpha + 0 = 0 + \alpha = \alpha$. (2) $\alpha + 1 = S(\alpha)$. (3) $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$. (4) $\alpha + \sup_{\beta \in B} \beta = \sup_{\beta \in B} (\alpha + \beta).$ (5) $k + \omega = \omega$ for all $k < \omega$. (6) $\alpha \cdot 0 = 0 \cdot \alpha = 0.$ (7) $\alpha \cdot 1 = 1 \cdot \alpha = \alpha$. (8) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma.$ (9) $\alpha \cdot \sup_{\beta \in B} \beta = \alpha \cdot \sup_{\beta \in B}$. (10) $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma.$ (11) $k \cdot \omega = \omega$ if $0 < k < \omega$. (12) $\alpha^0 = 1.$ (13) $\alpha^1 = \alpha$. (14) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}.$ (15) $\alpha^{\sup_{\beta \in B} \beta} = \sup_{\beta \in B} \alpha^{\beta}.$ (16) $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}.$

(17) If $\alpha \ge \beta$, then there is a unique ordinal $\gamma = \alpha - \beta$ such that $\beta + \gamma = \alpha$.

Additional facts that involve inequalities:

- (i) If $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.
- (ii) $\alpha \leq \beta + \alpha$.
- (iii) If $\beta < \gamma$ and $\alpha \ge 1$, then $\alpha \cdot \beta < \alpha \cdot \gamma$, and $\beta \le \alpha \cdot \beta$.
- (iv) If $\beta < \gamma$ and $\alpha \ge 2$, then $\alpha^{\beta} < \alpha^{\gamma}$, and $\beta \le \alpha^{\beta}$.

Lemma 1. If α is any ordinal and β is a nonzero ordinal, then there is a unique pair of ordinals γ and δ such that

$$\alpha = \beta \cdot \gamma + \delta \text{ and } \delta < \beta.$$

If α is any nonzero ordinal and $\beta \geq 2$, then there is a largest ordinal γ such that

$$\beta^{\gamma} \leq \alpha.$$

Furthermore, there is a nonzero $k < \omega$ and an ordinal $\delta < \beta^{\gamma}$ such that

$$\alpha = \beta^{\gamma} \cdot k + \delta.$$

Theorem 2 (Cantor Normal Form). Let α be a nonzero ordinal. Then exist a nonzero natural number n, ordinals $\beta_1 > \beta_2 > \cdots > \beta_n$ and nonzero natural numbers k_1, k_2, \ldots, k_n such that

(*)
$$\alpha = \sum_{i=1}^{n} \omega^{\beta_i} \cdot k_i$$

Furthermore, the β_i 's and k_i 's are uniquely determined by α .

Note: since addition is not commutative, the order in (*) is important! We define $\sum_{i=1}^{n}$ so that the first term is left most:

$$\sum_{i=1}^{n} \omega^{\beta_i} \cdot k_i = \omega^{\beta_1} \cdot k_1 + \dots + \omega^{\beta_n} \cdot k_n.$$

We did not show uniqueness in class, but the uniqueness is a consequence of the following proposition, which shows how to determine which of two ordinals in Cantor normal form is the smaller one.

Date: February 24, 2011.

Proposition 3. Suppose

$$\alpha = \sum_{i=1}^{n} \omega^{\beta_i} \cdot k_i$$
$$\alpha' = \sum_{i=1}^{n} \omega^{\beta_i} \cdot k'_i.$$

where $\beta_1 > \beta_2 > \cdots > \beta_n$ and where the k_i and k'_i are natural numbers (possibly zero). Suppose also that there is an m with $1 \le m \le n$ such that

$$k_m < k'_m$$
, and
 $k_i = k'_i$ for all $i < m$.

Then $\alpha < \alpha'$.

Note that in proposition ? we are allowing some of the k_i and k'_i to be 0. This is so that we can express α and α' using the same exponents β_1, \ldots, β_n .

Lemma 4. (1) If $\beta > \gamma$ and if n and m are natural numbers, then

$$\omega^\beta \cdot m + \omega^\gamma \cdot n < \omega^\beta \cdot (m+1)$$

(2) If $\beta_1 > \beta_2 > \cdots > \beta_n$ and if n, k_1, \ldots, k_n are natural numbers, then

$$\sum_{i=1}^{n} \omega^{\beta_i} \cdot k_i < \omega^{\beta_1} \cdot (k_1 + 1)$$

Proof. To prove (1), note that $n < \omega$, so

$$\omega^{\gamma} \cdot n < \omega^{\gamma} \cdot \omega = \omega^{\gamma+1} \leq \omega^{\beta}$$

Thus

$$\omega^{\beta} \cdot m + \omega^{\gamma} \cdot n < \omega^{\beta} \cdot m + \omega^{\beta} = \omega^{\beta} \cdot (m+1).$$

Assertion (2) follows from (1) by induction on n.

Proof of proposition 3. By part (2) of the lemma,

$$\sum_{i \ge m} \omega^{\beta_i} \cdot k_i < \omega^{\beta_m} \cdot (k_m + 1)$$

$$\leq \omega^{\beta_m} \cdot k'_m \quad (\text{since } k_m < k'_m)$$

$$\leq \sum_{i \ge m} \omega^{\beta_i} \cdot k'_i,$$

 \mathbf{SO}

(*)
$$\sum_{i \ge m} \omega^{\beta_i} \cdot k_i < \sum_{i \ge m} \omega^{\beta_i} \cdot k'_i$$

The proposition follows since $\eta < \nu$ implies $\delta + \eta < \delta + \nu$. (Add $\delta = \sum_{i=1}^{m-1} \omega^{\beta_i} \cdot k_i$ on the left to both sides of (*).)