
MATH 161 LECTURE NOTES: BASIC FACTS ABOUT ORDINAL ARITHMETIC

Here we summarize the basic facts about ordinal arithmetic:

(1) α+ 0 = 0 + α = α.
(2) α+ 1 = S(α).
(3) α+ (β + γ) = (α+ β) + γ.
(4) α+ supβ∈B β = supβ∈B(α+ β).
(5) k + ω = ω for all k < ω.
(6) α · 0 = 0 · α = 0.
(7) α · 1 = 1 · α = α.
(8) α · (β + γ) = α · β + α · γ.
(9) α · supβ∈B β = α · supβ∈B .

(10) α · (β · γ) = (α · β) · γ.
(11) k · ω = ω if 0 < k < ω.
(12) α0 = 1.
(13) α1 = α.
(14) αβ+γ = αβ · αγ .
(15) αsupβ∈B β = supβ∈B α

β .

(16) (αβ)γ = αβ·γ .
(17) If α ≥ β, then there is a unique ordinal γ = α− β such that β + γ = α.

Additional facts that involve inequalities:

(i) If β < γ, then α+ β < α+ γ.
(ii) α ≤ β + α.
(iii) If β < γ and α ≥ 1, then α · β < α · γ, and β ≤ α · β.
(iv) If β < γ and α ≥ 2, then αβ < αγ , and β ≤ αβ .

Lemma 1. If α is any ordinal and β is a nonzero ordinal, then there is a unique pair of ordinals γ and δ such that

α = β · γ + δ and δ < β.

If α is any nonzero ordinal and β ≥ 2, then there is a largest ordinal γ such that

βγ ≤ α.

Furthermore, there is a nonzero k < ω and an ordinal δ < βγ such that

α = βγ · k + δ.

Theorem 2 (Cantor Normal Form). Let α be a nonzero ordinal. Then exist a nonzero natural number n, ordinals
β1 > β2 > · · · > βn and nonzero natural numbers k1, k2, . . . , kn such that

(*) α =

n∑
i=1

ωβi · ki

Furthermore, the βi’s and ki’s are uniquely determined by α.

Note: since addition is not commutative, the order in (*) is important! We define
∑n
i=1 so that the first term is

left most:
n∑
i=1

ωβi · ki = ωβ1 · k1 + · · · + ωβn · kn.

We did not show uniqueness in class, but the uniqueness is a consequence of the following proposition, which
shows how to determine which of two ordinals in Cantor normal form is the smaller one.
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Proposition 3. Suppose

α =

n∑
i=1

ωβi · ki

α′ =

n∑
i=1

ωβi · k′i.

where β1 > β2 > · · · > βn and where the ki and k
′
i are natural numbers (possibly zero). Suppose also that there is

an m with 1 ≤ m ≤ n such that

km < k′m, and

ki = k′i for all i < m.

Then α < α′.

Note that in proposition ? we are allowing some of the ki and k′i to be 0. This is so that we can express α and
α′ using the same exponents β1, . . . , βn.

Lemma 4. (1) If β > γ and if n and m are natural numbers, then

ωβ ·m+ ωγ · n < ωβ · (m+ 1).

(2) If β1 > β2 > · · · > βn and if n, k1, . . . , kn are natural numbers, then
n∑
i=1

ωβi · ki < ωβ1 · (k1 + 1).

Proof. To prove (1), note that n < ω, so

ωγ · n < ωγ · ω = ωγ+1 ≤ ωβ .

Thus
ωβ ·m+ ωγ · n < ωβ ·m+ ωβ = ωβ · (m+ 1).

Assertion (2) follows from (1) by induction on n. �

Proof of proposition 3. By part (2) of the lemma,∑
i≥m

ωβi · ki < ωβm · (km + 1)

≤ ωβm · k′m (since km < k′m)

≤
∑
i≥m

ωβi · k′i,

so

(*)
∑
i≥m

ωβi · ki <
∑
i≥m

ωβi · k′i.

The proposition follows since η < ν implies δ + η < δ + ν. (Add δ =
∑m−1
i=1 ωβi · ki on the left to both sides of

(*).) �


