THE FIRST FEW ORDINALS

The first ordinal numbers are the natural numbers: $0,1,2, \ldots$ The next one is ω (i.e., \mathbf{N}), followed by $S(\omega), S(S(\omega)), \ldots$ These can also be written as

$$
\omega, \omega+1, \omega+2, \omega+3, \ldots
$$

Next comes $\omega \cdot 2$, followed by $\omega \cdot 2+1, \omega \cdot 2+2, \omega \cdot 3+3, \ldots$
Continuing in this way, we get ordinals of the form

$$
\omega \cdot n+m
$$

for every pair of natural numbers n and m. The ordering of these is as follows: if a, b, c, d are natural numbers with $a<c$, then $\omega \cdot a+b<\omega \cdot c+d$, and if $b<d$, then $\omega \cdot a+b<\omega \cdot a+d$.

After all those ordinals comes ω^{2} and (more generally) all ordinals of the form $\omega^{2}+\omega \cdot n+m$, where n and m are natural numbers.

After all those comes $\omega^{2} \cdot 2$.
In general, if $\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle$ is any finite sequence of natural numbers with $a_{n} \neq$ 0 , we can form an ordinal

$$
\alpha=\omega^{n} \cdot a_{n}+\omega^{n-1} \cdot a_{n-1}+\cdots+\omega^{2} \cdot a_{2}+\omega \cdot a_{1}+a_{0}
$$

Given another such ordinal

$$
\beta=\omega^{m} \cdot b_{m}+\omega^{m-1} \cdot b_{m-1}+\cdots+\omega^{2} \cdot b_{2}+\omega \cdot b_{1}+b_{0}
$$

The ordering is as follows (assuming $a_{n} \neq 0$ and $b_{m} \neq 0$): if $n<m$, then $\alpha<\beta$.
If $\alpha \neq \beta$ and $n=m$, let k be the largest number such that $a_{k} \neq b_{k}$. Then $\alpha<\beta$ if $a_{k}<b_{k}$, and $\beta<\alpha$ if $b_{k}<a_{k}$.

After all those ordinals comes ω^{ω}, but perhaps that's enough for now...

[^0]
[^0]: Date: February 19, 2011.

